

NUMA Siloing in the FreeBSD Network Stack

Drew Gallatin EuroBSDCon 2019

(Or how to serve 200Gb/s of TLS from FreeBSD)

Motivation:

Since 2016, Netflix has been able to serve 100Gb/s of TLS encrypted video traffic from a single server.
How can we serve ~200Gb/s of video from a single server?

Netflix Video Serving Workload

FreeBSD-current
NGINX web server
Video served via sendfile(2) and encrypted using software kTLS
TCP_TXTLS_ENABLE from tcp(4)

Why do we need NUMA for 200Gb/s?

Netflix Video Serving Hardware for 100Gb/s

 Intel "Broadwell" Xeon (original 100g) • 60GB/s mem bw • 40 lanes PCle Gen3 ~32GB/s of IO bandwidth Intel "Skylake" & "Cascade Lake" Xeon (new 100g) ○ 90GB/s mem bw ○ 48 lanes PCle Gen 3 ~38GB/s of IO bandwidth

Netflix 200Gb/s Video Serving Data Flow

Memory

Using sendfile and software kTLS, data is encrypted by the host CPU.

200Gb/s == 25GB/s

~100GB/sec of memory bandwidth and ~64 PCIe lanes are needed to serve 200Gb/s

25GB/s

Disks

Netflix Video Serving Hardware for 200Gb/s (Intel) "Throw another CPU socket at it"

- 2x Intel "Skylake" / "Cascade Lake" Xeon
 - Dual Xeon(R) Silver 4116 / 4216
 - 2 UPI links connecting Xeons
 - 180GB/s (2 x 90GB/s) mem bw
 - 96 (2 x 48) lanes PCIe Gen 3
 ∼75GB/s IO bandwidth

Netflix Video Serving Hardware for 200Gb/s (Intel)

8x PCIe Gen3 x4 NVME

4 per NUMA node

2x PCIe Gen3 x16 100GbE NIC

1 per NUMA node

Netflix Video Serving Hardware for 200Gb/s (AMD) "4 chips in 1 socket"

• AMD EPYC "Naples" / "Rome"

- 7551 & 7502P
- Single socket, quad "Chiplet"
- Infinity Fabric connecting chiplets
- 120-150GB/s mem bw
- 128 lanes PCIe Gen 3 (Gen 4 for 7502P)
 100GB/sec IO BW (200GB/s Gen 4)

Netflix Video Serving Hardware for 200Gb/s (AMD) "4 chips in 1 socket"

8x PCIe Gen3 x4 NVME
2 per NUMA node
4x PCIe Gen3 x16 100GbE NIC
1 per NUMA node

Initial 200G prototype performance:

- 85Gb/s (AMD)
- 130Gb/s (Intel)
- 80% CPU
- ~40% QPI saturation
 - Measured by Intel's pcm.x tool from the intel-pcm port
- Unknown Infinity Fabric saturation
 - AMD's tools are lacking (even on Linux)

What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can be "closer" to some CPU cores

Multi Socket Before NUMA

Memory access was UNIFORM:

Each core had equal and direct access to all memory and IO devices.

Multi Socket system with NUMA:

- Each core has unequal access to memory
- Each core has unequal access to I/O devices

Present day NUMA:

A Node configurations are common on AMD EPYC

Cross-Domain costs

Latency Penalty:
~50ns unloaded
Much, much, much more than 50ns loaded

Cross-Domain costs

Bandwidth Limit: • Intel UPI ~20GB/sec per link o Normally 2 or 3 links AMD Infinity Fabric ○ ~40GB/s

Strategy: Keep as much of our 100GB/sec of bulk data off the NUMA fabric is possible

 Bulk data congests NUMA fabric and leads to CPU stalls.

Steps to send data:

• DMA data from disk to memory

Disks

Memory

CPU

Steps to send data:

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption

Network Card

Disks

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption
 - Second NUMA crossing
- CPU writes encrypted data
 - \circ Third NUMA crossing

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption
 - Second NUMA crossing
- CPU writes encrypted data
 - \circ Third NUMA crossing

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption
 - Second NUMA crossing
- CPU writes encrypted data
 - Third NUMA crossing
- DMA from memory to Network

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption
 - Second NUMA crossing
- CPU writes encrypted data
 - Third NUMA crossing
- DMA from memory to Network
 - Fourth NUMA crossing

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU reads data for encryption
 - Second NUMA crossing
- CPU writes encrypted data
 - Third NUMA crossing
- DMA from memory to Network
 - Fourth NUMA crossing

Worst Case Summary:

- 4 NUMA crossings
 100GB/s of data on the NUMA fabric
 - Fabric saturates, cannot handle the load.
 - CPU Stalls, saturates early

Steps to send data:

• DMA data from disk to memory

Disks

Memory

CPU

Network Card

CPU

Steps to send data:

- DMA data from disk to memory
- CPU Reads data for encryption

Memory

Steps to send data:

- DMA data from disk to memory
- CPU Reads data for encryption
- CPU Writes encrypted data

Disks

Memory

CPU

Steps to send data:

- DMA data from disk to memory
- CPU Reads data for encryption
- CPU Writes encrypted data
- DMA from memory to Network

0 NUMA crossings!

Memory

Best Case Summary:

0 NUMA crossings 0GB/s of data on the NUMA fabric

How can we get as close as possible to the best case?

1 bhyve VM per NUMA Node, passing through NIC and disks?

- Doubles IPv4 address use
- More than 2x AWS cloud management overhead

 Managing one physical & two virtual machines
 non-starter

How can we get as close as possible to the best case?

Content aware steering using multiple IP addresses?
Doubles IPv4 address use
Increases AWS cloud management overhead
non-starter

How can we get as close as possible to the best case.. using lagg(4) with LACP for multiple NICs, and without increasing IPv4 address use or AWS management costs?

Impose order on the chaos.. *somehow*:

- Disk centric siloing
 - Try to do everything on the NUMA node where the content is stored
- Network centric siloing
 - Try to do as much as we can on the NUMA node that the LACP partner chose for us

Disk centric siloing

- Associate disk controllers with NUMA nodes
- Associate NUMA affinity with files
- Associate network connections with NUMA nodes
- Move connections to be "close" to the disk where the contents file is stored.
- After the connection is moved, there will be 0 NUMA crossings!

Disk centric siloing problems

- No way to tell link partner that we want LACP to direct traffic to a different switch/router port
 - So TCP acks and http requests will come in on the "wrong" port
- Moving connections can lead to TCP re-ordering due to using multiple egress NICs
- Some clients issue http GET requests for different content on the same TCP connection
 - Content may be on different NUMA domains!

Network centric siloing

- Associate network connections with NUMA nodes
- Allocate local memory to back media files when they are DMA'ed from disk
- Allocate local memory for TLS crypto destination buffers & do SW crypto locally
- Run RACK / BBR TCP pacers with domain affinity
- Choose local lagg(4) egress port

Associate network connections with NUMA nodes:

- Add a NUMA domain field to struct mbuf
 r346281
- Embed device's NUMA domain struct ifnet
 - o r346579
- Drivers tag received mbufs w/NUMA domain
 r346677
- Add NUMA domain to struct inpcb
 - o r346677

Associate network connections with NUMA nodes (continued):

- Record NUMA domain into struct inpcb when TCP connection is "born"
 - o r346677
- Ensure that a connection is given to an nginx worker bound to the correct domain
 More on this later

Allocate NUMA local memory to back video files

- Surprisingly easy.. Just run nginx with worker_cpu_affinity set to auto
- Default first-touch policy will cause the VM system to allocate pages on the same node as the nginx worker
- Thanks to kib@ and alc@ for pointing out a large patch that I had to sendfile() and vm_page_alloc() was not needed

Allocate local memory for TLS crypto destination buffers & do SW crypto locally

- kTLS worker threads are run with domain affinity
 kTLS worker threads have a domain allocation policy to prefer the local NUMA domain
 - This ensures crypto destination buffers are allocated on the local NUMA domain
 - D21648

How to choose local lagg(4) egress port?

- Outgoing mbufs tagged with NUMA domain of TCP connection
 - r346677
- Lagg ports are organized into a hierarchical model, where we limit our choice of NICs to the set of NICs on the desired NUMA domain. (when ifconfig lagg0 use_numa is set)
 r347055

How to choose the correct nginx worker?

- Augment SO_REUSEPORT to make a new TCP_REUSEPORT_NUMA socket option
 - SO_REUSEPORT allows multiple threads / processes to share a listen socket
 - TCP_REUSEPORT_NUMA causes incoming connections to be filtered to only listen sockets on the same domain (with a fallback if there are no listeners on the same domain)
 D21636

Steps to send data:

• DMA data from disk to memory

Network Card

Disks

Disks Steps to send data: Memory Network DMA data from disk to memory Card First NUMA bus Crossing 0 CPU CPU Disks Memory Network Card

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU Reads data for encryption

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU Reads data for encryption
- CPU Writes encrypted data

Steps to send data:

- DMA data from disk to memory
 - First NUMA bus crossing
- CPU Reads data for encryption
- CPU Writes encrypted data
- DMA from memory to Network

1 NUMA bus crossing!

Worst Case Summary:

1 NUMA crossing on average

 100% of disk reads across NUMA

 25GB/s of data on the NUMA fabric

 Still much less than 40GB/sec fabric bandwidth

Average Case Summary Xeon (2 NUMA nodes):

0.5 NUMA crossings on average

 50% of disk reads across NUMA

 12.5GB/s of data on the NUMA fabric

 CPU does not saturate, we exceed 190Gb/s

Average Case Summary EPYC (4 NUMA nodes):

0.75 NUMA crossings on average

 75% of disk reads across NUMA

 18.75GB/s of data on the NUMA fabric

 CPU does not saturate, we exceed 190Gb/s

Performance Results: Xeon 4216

Xeon: 105Gbs -> 191Gb/s (NUMA fabric utilization reduced 40% to 13%)

EPYC: 68Gb/s -> 194Gb/s

Performance Results: Intel

NETFLIX

Dual Xeon Silver 4216 Bandwidth

Performance Results: Intel

NETFLIX

Performance Results: AMD

NETFLIX

AMD EPYC 7502P(ish) Bandwidth

Actual data from pcm.x @105Gb/s

Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

	UPIO UPI1 UPIO UPI1	
 SKT 0 SKT 1 	26 G 26 G 40% 40% 28 G 28 G 42% 42%	
 Total UPI inc	coming data traffic: 109 G UPI data trainio,	
Intel(r) UPI links):	traffic estimation in bytes (data and non-data traffic outgoing from CPU/socket through)	UPI
	UPIO UPI1 UPIO UPI1	
 SKT 0 SKT 1	47 G 47 G 73% 73% 46 G 46 G 69% 69%	
 Total UPI out MEM (GB)->	going data and non-data traffic: 188 G READ WRITE PMM RD PMM WR CPU energy DIMM energy	
 SKT 0 SKT 1	122.34 136.19 0.00 0.00 272.51 58.37 8.24 6.99 0.00 0.00 231.16 28.63	
	130.57 143.18 0.00 0.00 503.68 87.01	

Actual data from nstat (Xeon)

333.sja	c002.de	v# nsta	at 15				
InMpps	OMpps	InGbs	OGbs e	err	TCP Est	%CPU s	yscalls
1.43	8.32	1.19	99.41	0	74690	62.96	176262
1.50	8.69	1.22	103.86	0	76091	63.99	171871
1.48	8.48	1.14	101.31	0	77022	64.09	178515
1.49	8.56	1.17	102.22	0	78057	65.17	173108
1.49	8.61	1.12	102.91	0	78654	64.65	169636
	0 01	1 0 0	105 07	~			1 (1 1 0 1

~ ~	••••							000040		
48	8.48	1.14	101.31	0	77022	64.09	178515	701432	157910	112.74
49	8.56	1.17	102.22	0	78057	65.17	173108	696963	157307	111.95
49	8.61	1.12	102.91	0	78654	64.65	169636	700402	157492	111.41
51	8.81	1.09	105.27	0	79617	73.67	167101	683410	155796	111.05
52	8.80	1.18	105.14	0	80721	69.15	173158	694059	156457	109.98
48	8.38	1.13	100.03	0	81477	65.05	182784	698356	157515	109.25
51	8.61	1.13	102.88	0	82449	65.90	181321	701593	157383	108.98
49	8.64	1.13	103.23	0	82404	69.43	187668	697208	156812	108.39
47	8.59	1.12	102.69	0	79792	63.68	149610	676066	155931	108.10
56	9.01	1.30	107.76	0	78127	69.11	138318	685625	156429	107.79

irq GBfree

696238 157743 114.11 698812 158257 113 44

CSW

^C

c333.sjc002.dev# sysctl hw.model

hw.model: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz c333.sjc002.dev# sysctl hw.ncpu

hw.ncpu: 64

Actual data from pcm.x @191Gb/s

Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

		UPI0	UPI1	UPI	0 UPI1	1					
 SKT SKT 		3926 M 3958 M	3930 3954		18% 18%	189					
 Total	UPI in	coming da	ta traf:	fic: 1	5 G	UPI data trai	L10,	untroller	traffic	.13	
Intel(links)	(r) UPI :	traffic	estimat:	ion in b	ytes (da	ata and non-dat	a traffic o	utgoing fro	n CPU/sock	et throug	h UPI
		UPI0	UPI1	UPI	0 UPI1	1		See.	22	210	
 SKT SKT			11 G 11 G	52% 52%	53% 52%						
 Total MEM (G	UPI ou GB)->	tgoing da READ	ta and : WRITE	non-data PMM RD	traffic	c: 45 G R CPU energy	DIMM ener	gy			
SKT SKT		32.28 32.77	28.00 28.18	0.00	0.00	99.01 16.97 100.75	18.31				
		65.05	56.19	0.00	0.00	199.76	35.28				

Actual data from nstat (Xeon)

333.SJC	cuuz.aet	/# nsta	at 15							
InMpps	OMpps	InGbs	OGbs	err	TCP Est	%CPU sy	scalls	CSW 2	irq GBf1	ree
2.78	15.90	1.89	190.33	B 0	150083	72.75	255685	1005743	167659	4.47
2.81	15.94	1.97	190.83	3 0	150371	73.61	259173	1004664	167348	4.48
2.80	15.93	1.88	190.67	′ 0	150363	74.01	254862	997954	167199	5.09
2.81	16.00	1.99	191.61	. 0	151127	73.54	257203	1000740	167202	5.21
2.80	16.00	1.93	191.61	. 0	151216	74.38	257396	1001018	167243	4.58
2.79	16.00	1.86	191.63	3 0	151559	73.53	256385	1001693	167205	4.60
2.79	15.96	1.85	191.11	. 0	151548	74.65	256022	995630	166977	4.51
2.82	16.00	1.93	191.62	2 0	152176	74.43	259680	1001880	166890	4.72
2.83	16.00	1.87	191.61	. 0	152258	74.47	259494	1003018	166839	4.01
2.84	16.00	1.88	191.62	2 0	152805	74.41	258864	1003171	166727	4.56
2.85	15.98	1.89	191.47	' O	153473	76.12	260823	995460	166377	3.84
2.85	15.99	1.83	191.61	. 0	153864	74.90	259149	1003219	166484	4.44
2.87	15.99	1.88	191.60) ()	154081	76.02	261867	1001356	166192	3.80
2.88	15.99	1.97	191.62	2 0	154421	75.73	262377	1003028	166250	4.76

 $^{\rm C}$

c333.sjc002.dev# sysctl hw.model hw.model: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz c333.sjc002.dev# sysctl hw.ncpu hw.ncpu: 64

V4 BGP pretixes

Actual data from nstat (EPYC)

-	ses.sjcu	JUZ.dev i	f nstat	- T2					
	InMpps	OMpps	InGbs	OGbs	err	TCP Est	%CPU syscall:	5 CSW	irq GBfree5
	0.94	5.12	0.91	60.96	0	43687	30.53 151574	672314	100726 181.99
	0.97	5.26	0.80	62.68	0	45468	34.36 150603	666261	97171 178.94
	0.97	5.33	0.82	63.54	0	48308	47.74 147954	632247	90170 178.57
	0.99	5.49	0.75	65.49	0	50633	69.63 129971	565679	76805 178.57
	1.02	5.47	0.87	65.24	0	52431	73.24 127194	555176	74026 179.48
	1.02	5.45	0.78	64.97	0	53261	72.05 122047	553728	73717 178.82
	1.01	5.42	0.81	64.54	0	53534	72.13 118832	550171	74031 178.36
	1.01	5.47	0.77	65.25	0	53336	67.82 113505	561734	76411 178.58
	1.01	5.46	0.80	65.04	0	54342	66.57 113245	563114	77554 179.42
	1.01	5.43	0.73	64.66	0	55936	64.35 109110	565602	79069 178.87
	1.00	5.36	0.76	63.81	0	58181	62.75 106302	573547	82039 178.33
	0.99	5.39	0.63	64.32	0	55587	55.30 82142	565436	84060 180.00
	1.05	5.76	0.66	68.72	0	54378	53.83 80994	575478	85235 179.12
	0.92	5.03	0.57	60.06	0	53749	54.38 81413	563538	82983 178.60
	0.98	5.34	0.61	63.70	0	53911	53.30 81227	569083	84893 179.35

c368.sjc002.dev# sysctl hw.ncpu

hw.ncpu: 64 c368.sjc002.dev# sysctl hw.model hw.model: AMD x:

Actual data from nstat (EPYC)

c368.sjc002.dev# nstat 15

InGbs OGbs	err TCP Est	%CPU syscalls csw	irq GBfree5
1.89 191.62	0 152688	63.18 239427 624677	64309 8.45
1.77 192.28	0 153085	62.51 239378 629312	64761 8.43
1.75 192.71	0 153462	63.56 241100 629712	64713 8.42
1.76 192.80	0 153519	63.71 235867 628167	64608 8.42
1.72 191.62	0 153445	62.12 237885 629998	64338 8.42
1.73 192.72	0 153521	62.62 236958 627838	64571 8.41
1.75 191.47	0 153659	62.43 239150 628649	64474 8.41
1.74 192.36	0 153683	63.31 236789 627122	64427 8.37
1.68 193.02	0 154106	63.69 237980 625786	64237 8.37
1.73 191.98	0 154027	61.68 238149 627631	64273 8.36
1.79 194.14	0 154469	64.59 240687 627712	64643 8.36
1.80 194.29	0 154681	64.73 237997 627571	64813 8.33
	<pre>InGbs OGbs 1.89 191.62 1.77 192.28 1.75 192.71 1.76 192.80 1.72 191.62 1.73 192.72 1.75 191.47 1.74 192.36 1.68 193.02 1.73 191.98 1.79 194.14 1.80 194.29</pre>	<pre>InGbs OGbs err TCP Est 1.89 191.62 0 152688 1.77 192.28 0 153085 1.75 192.71 0 153462 1.76 192.80 0 153519 1.72 191.62 0 153445 1.73 192.72 0 153521 1.75 191.47 0 153659 1.74 192.36 0 153683 1.68 193.02 0 154106 1.73 191.98 0 154027 1.79 194.14 0 154469 1.80 194.29 0 154681</pre>	InGbsOGbserrTCPEst%CPUsyscallscsw1.89191.62015268863.182394276246771.77192.28015308562.512393786293121.75192.71015346263.562411006297121.76192.80015351963.712358676281671.72191.62015344562.122378856299981.73192.72015352162.622369586278381.75191.47015365962.432391506286491.74192.36015368363.312367896271221.68193.02015410663.692379806257861.73191.98015402761.682381496276311.79194.14015446964.592406876277121.80194.29015468164.73237997627571

^C

c368.sjc002.dev# sysctl hw.ncpu

hw.ncpu: 64

c368.sjc002.dev# sysctl hw.model

hw.model: AMD x

4 BGP prefixes

Thank you

Slides at: https://people.freebsd.org/~gallatin/talks/euro2019.pdf

