
NUMA Siloing in the
FreeBSD Network Stack

Drew Gallatin
EuroBSDCon 2019

(Or how to serve
200Gb/s of TLS from
FreeBSD)

 Motivation:

● Since 2016, Netflix has been able to
serve 100Gb/s of TLS encrypted video
traffic from a single server.

● How can we serve ~200Gb/s of video
from a single server?

 Netflix Video Serving Workload

● FreeBSD-current
● NGINX web server
● Video served via sendfile(2) and

encrypted using software kTLS
○ TCP_TXTLS_ENABLE from tcp(4)

Why do we need NUMA
for 200Gb/s ?

 Netflix Video Serving Hardware for
100Gb/s

● Intel “Broadwell” Xeon (original 100g)
○ 60GB/s mem bw
○ 40 lanes PCIe Gen3

■ ~32GB/s of IO bandwidth
● Intel “Skylake” & “Cascade Lake” Xeon (new 100g)

○ 90GB/s mem bw
○ 48 lanes PCIe Gen 3

■ ~38GB/s of IO bandwidth

Netflix 200Gb/s Video Serving Data Flow

CPU

Disks Memory Network Card

25
G

B
/s

25
G

B
/s

Bulk Data

Metadata

25GB/s 25GB/s

Using sendfile and software kTLS,
data is encrypted by the host CPU.

200Gb/s == 25GB/s

~100GB/sec of memory bandwidth
and ~64 PCIe lanes are needed to
serve 200Gb/s

 Netflix Video Serving Hardware for
200Gb/s (Intel)
“Throw another CPU socket at it”

● 2x Intel “Skylake” / “Cascade Lake” Xeon

○ Dual Xeon(R) Silver 4116 / 4216
○ 2 UPI links connecting Xeons
○ 180GB/s (2 x 90GB/s) mem bw
○ 96 (2 x 48) lanes PCIe Gen 3

■ ~75GB/s IO bandwidth

 Netflix Video Serving Hardware for
200Gb/s (Intel)

● 8x PCIe Gen3 x4 NVME

○ 4 per NUMA node
● 2x PCIe Gen3 x16 100GbE NIC

○ 1 per NUMA node

 Netflix Video Serving Hardware for
200Gb/s (AMD) “4 chips in 1 socket”

● AMD EPYC “Naples” / “Rome”

○ 7551 & 7502P
○ Single socket, quad “Chiplet”
○ Infinity Fabric connecting chiplets
○ 120-150GB/s mem bw
○ 128 lanes PCIe Gen 3 (Gen 4 for 7502P)

■ 100GB/sec IO BW (200GB/s Gen 4)

 Netflix Video Serving Hardware for
200Gb/s (AMD) “4 chips in 1 socket”

● 8x PCIe Gen3 x4 NVME

○ 2 per NUMA node
● 4x PCIe Gen3 x16 100GbE NIC

○ 1 per NUMA node

 Initial 200G prototype performance:

● 85Gb/s (AMD)
● 130Gb/s (Intel)
● 80% CPU
● ~40% QPI saturation

○ Measured by Intel’s pcm.x tool from the
intel-pcm port

● Unknown Infinity Fabric saturation
○ AMD’s tools are lacking (even on Linux)

 What is NUMA?

Non Uniform Memory Architecture

That means memory and/or devices can
be “closer” to some CPU cores

Memory

CPU

Network Card

Disks

Multi Socket Before NUMA

Memory

Network Card

Disks

CPU
North Bridge

Memory access
was UNIFORM:

Each core had
equal and direct
access to all
memory and IO
devices.

Memory

CPU

Network Card

Disks

Multi Socket system with NUMA:

Memory

Network Card

DisksMemory access can be
NON-UNIFORM
● Each core has

unequal access to
memory

● Each core has
unequal access to
I/O devices

CPU

NUMA Bus

Memory

CPU

Network Card

Disks

Present day NUMA:

Memory

Network Card

DisksEach locality zone
called a
“NUMA Domain” or
“NUMA Node” CPU

NUMA Bus

Node 0 Node 1

4 Node configurations are
common on AMD EPYC

Cross-Domain costs

Latency Penalty:
● ~50ns unloaded
● Much, much,

much more than
50ns loaded

Cross-Domain costs

Bandwidth Limit:
● Intel UPI

○ ~20GB/sec per link
○ Normally 2 or 3

links
● AMD Infinity Fabric

○ ~40GB/s

 Strategy: Keep as much of our
100GB/sec of bulk data off the
NUMA fabric is possible

● Bulk data congests NUMA fabric and leads to
CPU stalls.

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing
● DMA from memory to Network

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing
● DMA from memory to Network

○ Fourth NUMA crossing

Dual Xeon: Worst Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU reads data for encryption

○ Second NUMA crossing
● CPU writes encrypted data

○ Third NUMA crossing
● DMA from memory to Network

○ Fourth NUMA crossing

 Worst Case Summary:

● 4 NUMA crossings
● 100GB/s of data on the NUMA fabric

○ Fabric saturates, cannot handle the load.
○ CPU Stalls, saturates early

Dual Xeon: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual Xeon: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption

Dual Xeon: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual Xeon: Best Case Data Flow

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory
● CPU Reads data for encryption
● CPU Writes encrypted data
● DMA from memory to Network

0 NUMA crossings!

 Best Case Summary:

● 0 NUMA crossings
● 0GB/s of data on the NUMA

fabric

 How can we get as close as
possible to the best case?

1 bhyve VM per NUMA Node, passing through NIC
and disks?
● Doubles IPv4 address use
● More than 2x AWS cloud management overhead

○ Managing one physical & two virtual machines
● non-starter

 How can we get as close as
possible to the best case?

Content aware steering using multiple IP addresses?
● Doubles IPv4 address use
● Increases AWS cloud management overhead
● non-starter

 How can we get as close as
possible to the best case..
using lagg(4) with LACP for multiple
NICs, and without increasing IPv4
address use or AWS management
costs?

Impose order on the chaos..
somehow:

● Disk centric siloing
○ Try to do everything on the NUMA node where

the content is stored
● Network centric siloing

○ Try to do as much as we can on the NUMA
node that the LACP partner chose for us

Disk centric siloing

● Associate disk controllers with NUMA nodes
● Associate NUMA affinity with files
● Associate network connections with NUMA nodes
● Move connections to be “close” to the disk where

the contents file is stored.
● After the connection is moved, there will be 0

NUMA crossings!

Disk centric siloing problems

● No way to tell link partner that we want LACP to
direct traffic to a different switch/router port
○ So TCP acks and http requests will come in on

the “wrong” port
● Moving connections can lead to TCP re-ordering

due to using multiple egress NICs
● Some clients issue http GET requests for different

content on the same TCP connection
○ Content may be on different NUMA domains!

Network centric siloing

● Associate network connections with NUMA nodes
● Allocate local memory to back media files when

they are DMA’ed from disk
● Allocate local memory for TLS crypto destination

buffers & do SW crypto locally
● Run RACK / BBR TCP pacers with domain affinity
● Choose local lagg(4) egress port

Associate network connections with NUMA
nodes:

● Add a NUMA domain field to struct mbuf
○ r346281

● Embed device’s NUMA domain struct ifnet
○ r346579

● Drivers tag received mbufs w/NUMA domain
○ r346677

● Add NUMA domain to struct inpcb
○ r346677

Associate network connections with NUMA
nodes (continued):

● Record NUMA domain into struct inpcb when TCP
connection is “born”
○ r346677

● Ensure that a connection is given to an nginx
worker bound to the correct domain
○ More on this later

Allocate NUMA local memory to back
video files

● Surprisingly easy.. Just run nginx with
worker_cpu_affinity set to auto

● Default first-touch policy will cause the VM system
to allocate pages on the same node as the nginx
worker

● Thanks to kib@ and alc@ for pointing out a large
patch that I had to sendfile() and vm_page_alloc()
was not needed

Allocate local memory for TLS crypto
destination buffers & do SW crypto locally

● kTLS worker threads are run with domain affinity
● kTLS worker threads have a domain allocation

policy to prefer the local NUMA domain
○ This ensures crypto destination buffers are

allocated on the local NUMA domain
○ D21648

How to choose local lagg(4) egress port?

● Outgoing mbufs tagged with NUMA domain of
TCP connection
○ r346677

● Lagg ports are organized into a hierarchical
model, where we limit our choice of NICs to the
set of NICs on the desired NUMA domain. (when
ifconfig lagg0 use_numa is set)
○ r347055

How to choose the correct nginx worker?
● Augment SO_REUSEPORT to make a new

TCP_REUSEPORT_NUMA socket option
○ SO_REUSEPORT allows multiple threads /

processes to share a listen socket
○ TCP_REUSEPORT_NUMA causes incoming

connections to be filtered to only listen sockets
on the same domain (with a fallback if there
are no listeners on the same domain)
■ D21636

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus Crossing

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus Crossing

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption
● CPU Writes encrypted data

Dual Xeon: Worst Case Data Flow
with NUMA siloing

CPU

Disks Memory Network
Card

CPU

Disks Memory Network
Card

Steps to send data:
● DMA data from disk to memory

○ First NUMA bus crossing
● CPU Reads data for encryption
● CPU Writes encrypted data
● DMA from memory to Network

1 NUMA bus crossing!

 Worst Case Summary:

● 1 NUMA crossing on average
○ 100% of disk reads across NUMA

● 25GB/s of data on the NUMA fabric
○ Still much less than 40GB/sec fabric bandwidth

 Average Case Summary Xeon (2
NUMA nodes):

● 0.5 NUMA crossings on average
○ 50% of disk reads across NUMA

● 12.5GB/s of data on the NUMA fabric
○ CPU does not saturate, we exceed 190Gb/s

 Average Case Summary EPYC (4
NUMA nodes):

● 0.75 NUMA crossings on average
○ 75% of disk reads across NUMA

● 18.75GB/s of data on the NUMA fabric
○ CPU does not saturate, we exceed 190Gb/s

 Performance Results: Xeon 4216

Xeon: 105Gbs -> 191Gb/s
(NUMA fabric utilization reduced 40% to 13%)

EPYC: 68Gb/s -> 194Gb/s

 Performance Results: Intel

 Performance Results: Intel

 Performance Results: AMD

 Actual data from pcm.x @105Gb/s
Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

 UPI0 UPI1 | UPI0 UPI1
--

 SKT 0 26 G 26 G | 40% 40%
 SKT 1 28 G 28 G | 42% 42%
--

Total UPI incoming data traffic: 109 G UPI data traffic/Memory controller traffic: 0.40

Intel(r) UPI traffic estimation in bytes (data and non-data traffic outgoing from CPU/socket through UPI
links):

 UPI0 UPI1 | UPI0 UPI1
--

 SKT 0 47 G 47 G | 73% 73%
 SKT 1 46 G 46 G | 69% 69%
--

Total UPI outgoing data and non-data traffic: 188 G
MEM (GB)->| READ | WRITE | PMM RD | PMM WR | CPU energy | DIMM energy |
--

 SKT 0 122.34 136.19 0.00 0.00 272.51 58.37
 SKT 1 8.24 6.99 0.00 0.00 231.16 28.63
--

 * 130.57 143.18 0.00 0.00 503.68 87.01

 Actual data from nstat (Xeon)
c333.sjc002.dev# nstat 15
 InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree
 1.43 8.32 1.19 99.41 0 74690 62.96 176262 696238 157743 114.11
 1.50 8.69 1.22 103.86 0 76091 63.99 171871 698812 158257 113.44
 1.48 8.48 1.14 101.31 0 77022 64.09 178515 701432 157910 112.74
 1.49 8.56 1.17 102.22 0 78057 65.17 173108 696963 157307 111.95
 1.49 8.61 1.12 102.91 0 78654 64.65 169636 700402 157492 111.41
 1.51 8.81 1.09 105.27 0 79617 73.67 167101 683410 155796 111.05
 1.52 8.80 1.18 105.14 0 80721 69.15 173158 694059 156457 109.98
 1.48 8.38 1.13 100.03 0 81477 65.05 182784 698356 157515 109.25
 1.51 8.61 1.13 102.88 0 82449 65.90 181321 701593 157383 108.98
 1.49 8.64 1.13 103.23 0 82404 69.43 187668 697208 156812 108.39
 1.47 8.59 1.12 102.69 0 79792 63.68 149610 676066 155931 108.10
 1.56 9.01 1.30 107.76 0 78127 69.11 138318 685625 156429 107.79
^C
c333.sjc002.dev# sysctl hw.model
hw.model: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
c333.sjc002.dev# sysctl hw.ncpu
hw.ncpu: 64

 Actual data from pcm.x @191Gb/s
Intel(r) UPI data traffic estimation in bytes (data traffic coming to CPU/socket through UPI links):

 UPI0 UPI1 | UPI0 UPI1
--

 SKT 0 3926 M 3930 M | 18% 18%
 SKT 1 3958 M 3954 M | 18% 18%
--

Total UPI incoming data traffic: 15 G UPI data traffic/Memory controller traffic: 0.13

Intel(r) UPI traffic estimation in bytes (data and non-data traffic outgoing from CPU/socket through UPI
links):

 UPI0 UPI1 | UPI0 UPI1
--

 SKT 0 11 G 11 G | 52% 53%
 SKT 1 11 G 11 G | 52% 52%
--

Total UPI outgoing data and non-data traffic: 45 G
MEM (GB)->| READ | WRITE | PMM RD | PMM WR | CPU energy | DIMM energy |
--

 SKT 0 32.28 28.00 0.00 0.00 99.01 16.97
 SKT 1 32.77 28.18 0.00 0.00 100.75 18.31
--

 * 65.05 56.19 0.00 0.00 199.76 35.28

 Actual data from nstat (Xeon)
c333.sjc002.dev# nstat 15
 InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree
 2.78 15.90 1.89 190.33 0 150083 72.75 255685 1005743 167659 4.47
 2.81 15.94 1.97 190.83 0 150371 73.61 259173 1004664 167348 4.48
 2.80 15.93 1.88 190.67 0 150363 74.01 254862 997954 167199 5.09
 2.81 16.00 1.99 191.61 0 151127 73.54 257203 1000740 167202 5.21
 2.80 16.00 1.93 191.61 0 151216 74.38 257396 1001018 167243 4.58
 2.79 16.00 1.86 191.63 0 151559 73.53 256385 1001693 167205 4.60
 2.79 15.96 1.85 191.11 0 151548 74.65 256022 995630 166977 4.51
 2.82 16.00 1.93 191.62 0 152176 74.43 259680 1001880 166890 4.72
 2.83 16.00 1.87 191.61 0 152258 74.47 259494 1003018 166839 4.01
 2.84 16.00 1.88 191.62 0 152805 74.41 258864 1003171 166727 4.56
 2.85 15.98 1.89 191.47 0 153473 76.12 260823 995460 166377 3.84
 2.85 15.99 1.83 191.61 0 153864 74.90 259149 1003219 166484 4.44
 2.87 15.99 1.88 191.60 0 154081 76.02 261867 1001356 166192 3.80
 2.88 15.99 1.97 191.62 0 154421 75.73 262377 1003028 166250 4.76
^C
c333.sjc002.dev# sysctl hw.model
hw.model: Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
c333.sjc002.dev# sysctl hw.ncpu
hw.ncpu: 64

 Actual data from nstat (EPYC)
c368.sjc002.dev# nstat 15
 InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree5
 0.94 5.12 0.91 60.96 0 43687 30.53 151574 672314 100726 181.99
 0.97 5.26 0.80 62.68 0 45468 34.36 150603 666261 97171 178.94
 0.97 5.33 0.82 63.54 0 48308 47.74 147954 632247 90170 178.57
 0.99 5.49 0.75 65.49 0 50633 69.63 129971 565679 76805 178.57
 1.02 5.47 0.87 65.24 0 52431 73.24 127194 555176 74026 179.48
 1.02 5.45 0.78 64.97 0 53261 72.05 122047 553728 73717 178.82
 1.01 5.42 0.81 64.54 0 53534 72.13 118832 550171 74031 178.36
 1.01 5.47 0.77 65.25 0 53336 67.82 113505 561734 76411 178.58
 1.01 5.46 0.80 65.04 0 54342 66.57 113245 563114 77554 179.42
 1.01 5.43 0.73 64.66 0 55936 64.35 109110 565602 79069 178.87
 1.00 5.36 0.76 63.81 0 58181 62.75 106302 573547 82039 178.33
 0.99 5.39 0.63 64.32 0 55587 55.30 82142 565436 84060 180.00
 1.05 5.76 0.66 68.72 0 54378 53.83 80994 575478 85235 179.12
 0.92 5.03 0.57 60.06 0 53749 54.38 81413 563538 82983 178.60
 0.98 5.34 0.61 63.70 0 53911 53.30 81227 569083 84893 179.35
c368.sjc002.dev# sysctl hw.ncpu
hw.ncpu: 64
c368.sjc002.dev# sysctl hw.model
hw.model: AMD xxxx

 Actual data from nstat (EPYC)
c368.sjc002.dev# nstat 15
 InMpps OMpps InGbs OGbs err TCP Est %CPU syscalls csw irq GBfree5
 2.72 16.06 1.89 191.62 0 152688 63.18 239427 624677 64309 8.45
 2.72 16.11 1.77 192.28 0 153085 62.51 239378 629312 64761 8.43
 2.73 16.15 1.75 192.71 0 153462 63.56 241100 629712 64713 8.42
 2.74 16.15 1.76 192.80 0 153519 63.71 235867 628167 64608 8.42
 2.72 16.06 1.72 191.62 0 153445 62.12 237885 629998 64338 8.42
 2.72 16.15 1.73 192.72 0 153521 62.62 236958 627838 64571 8.41
 2.71 16.04 1.75 191.47 0 153659 62.43 239150 628649 64474 8.41
 2.72 16.12 1.74 192.36 0 153683 63.31 236789 627122 64427 8.37
 2.71 16.17 1.68 193.02 0 154106 63.69 237980 625786 64237 8.37
 2.70 16.08 1.73 191.98 0 154027 61.68 238149 627631 64273 8.36
 2.74 16.26 1.79 194.14 0 154469 64.59 240687 627712 64643 8.36
 2.74 16.28 1.80 194.29 0 154681 64.73 237997 627571 64813 8.33
^C
c368.sjc002.dev# sysctl hw.ncpu
hw.ncpu: 64
c368.sjc002.dev# sysctl hw.model
hw.model: AMD xxxxxxxxxx

Thank you
Slides at:
https://people.freebsd.org/~gallatin/talks/euro2019.pdf

