
Rust: Systems Programmers
Can Have Nice Things

Arun Thomas

arun.thomas@acm.org

@arunthomas

EuroBSDCon 2019

mailto:arun.thomas@acm.org

On Systems Programming

[A] systems programmer has seen the terrors of the
world and understood the intrinsic horror of existence

-James Mickens, The Night Watch

2

What Makes Systems
Software Hard?

• Stakes are High: Systems software is critical to enforcing
security and safety

• Kernels, hypervisors, firmware, bootloaders, embedded
software, language runtimes, browsers, …

• Usually written in C or C++ for performance

• BUT C and C++ are not memory-safe

• Memory corruption vulnerabilities abound (and are exploited)

• See recent Microsoft study (next slide)

3

Memory Unsafety is a
Problem

4

Microsoft found ~70% of CVEs in their products each year
continue to be memory safety issues

(Matt Miller, MSRC @ Blue Hat IL 2019)

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

Microsoft and Rust

5

Intel and Rust

6

Talk Overview

“Systems Programmers Can Have Nice Things”
-Robert O’Callahan

Random Thoughts On Rust

• Why Rust?

• Rust for Systems Software

• Getting Started with Rust on BSD

7

ust?

8

Why

I like C.

9

But it turns out programming
languages have evolved in

the last 50 years.

10

Rust is a safe, fast,
productive systems

programming language.

11

Mozilla and Rust
• Rust was originally created by Mozilla Research

• Initial use case: Servo browser engine

• Mozilla began shipping Rust components in Firefox 48 in 2016

• Oxidation is Mozilla’s term for “Rusting out” components

• Rust code has improved Firefox’s security and performance

• Security: Safe parsers (MP4 metadata parser)

• Performance: New parallel CSS engine for faster page loads

12

Systems Programmers Can Have
Nice Things: Speed and Safety

• Performance on par with C

•Memory safety without garbage collection overheads

• Suitable for low-level systems software

• Thread safety (“Fearless Concurrency”)

• No concurrency bugs associated with multi-threaded
code

• Rust’s type system enforces memory/thread safety

13

Systems Programmers Can Have
Nice Things: Productivity

• Good interoperability with C

• Important for systems software

• “Fancy” language features

• Type inference, algebraic data types, pattern matching, traits, generics

• Modules, hygienic macros, handy literals (0b1010, 0x8000_0000)

• Great tooling

• rustc - “friendly compiler with useful error messages”

• cargo - Great package manager and build system

• rustfmt - No bike shedding over coding styles

14

Hello, EuroBSDCon!

fn main() {
 println!("Hello, EuroBSDCon!");
}

15

Factorial

fn fact (n:int) -> int {
 if n == 0 { 1 }
 else { n * fact(n-1) }
}

16

Variables

fn main() {
 let x = 2; // Immutable
 x = 3; // Error
}

17

Mutable Variables

fn main() {
 let mut x = 2;
 x += 1;
 println!{“x is {}", x} // 3
}

18

References

• v2 “borrows” an immutable reference to v1

fn main() {
 let v1 = vec![1, 2, 3]; // vector
 let v2 = &v1; // reference
 println!{"v1 is {:?}", v1} // [1, 2, 3]
 println!{"v2 is {:?}", v2} // [1, 2, 3]
}

19

Mutable References
• Rust allows only one mutable reference in a given scope

fn main() {
 let mut s = String::from("hello");

 let r1 = &s; // OK, immutable ref
 let r2 = &s; // OK, immutable ref
 let r3 = &mut s; // Error

 println!("{}, {}, and {}", r1, r2, r3);
}

error[E0502]: cannot borrow `s` as mutable because it is also borrowed as
immutable

20

Ownership Overly
Simplified

• Ownership model is powerful, but takes time to fully grok

• Rust compiler tracks ownership (and borrowing/moves)

• Determines object lifetimes

• Restrict mutation of shared state (Allow mutation OR allow sharing)

• Ownership rules:

• Each value has a variable that’s the owner

• Only one owner at a time

• When owner goes out of scope, value will be dropped

21

Rust for
Systems Software

22

Gaining Popularity for
Systems Software (1/2)

• Rust Operating Systems: Tock, Redox, “Writing an OS in Rust”, …

• Tock is particularly interesting for deeply embedded applications

• See Multiprogramming a 64 kB Computer Safely and Efficiently (SOSP’17)

• Google, Amazon, and Intel developing Rust-based hypervisors

• crosvm, Firecracker, Cloud Hypervisor

• Created rust-vmm initiative to increase sharing/collaboration

• Coreboot developers created oreboot - “coreboot, with C removed”

• See Open Source Firmware Conference 2019 talk

23

Gaining Popularity for
Systems Software (2/2)

• Microsoft using Rust for Azure IoT Edge Security Daemon

• Google using Rust for Fuchsia components

• Facebook using Rust for Libero cryptocurrecy and parts of
HHVM PHP runtime

• Intel contributed VxWorks target

• Mozilla and Fastly writing Webassembly runtimes (wastime,
Lucet) in Rust

• CloudFlare and Dropbox using Rust for backend services

24

Is it time to rewrite
*BSD in Rust?

25

Mostly no, but
maybe…

26

Oxidation BSD-style?

• Explore Rust for:

• Device drivers

• Filesystems

• Userland utilities

• Networked services

27

Getting Started with
Rust on BSD

28

Installing Rust
• FreeBSD

• $ pkg install rust

• $ pkg install rust-nightly

• NetBSD and OpenBSD

• $ pkg_add rust

• DragonFly BSD

• $ pkg install rust

29

Rustup

• Alternatively, use rustup for FreeBSD and NetBSD

• Handy when managing multiple Rust toolchains

• $ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

• ‘curl | sh’ pattern not required

30

Hello World w/ Cargo
$ cargo new --bin hello
 Created binary (application) `hello` package
$ cd hello
$ cargo run
 Compiling hello v0.1.0 (/private/tmp/hello)
 Finished dev [unoptimized + debuginfo]
target(s) in 1.52s
 Running `target/debug/hello`
Hello, world!
$ vi src/main.rs # Edit source
$ vi Cargo.toml # Edit pkg dependencies
$ cargo run
…
Hello, EuroBSDCon!

31

http://main.rs

Rust Resources

32

Summary
• Rust: Systems Programmers Can Have Nice Things

• Higher-level language safety and productivity with low-
level language performance

• Growing industry use for systems programming

• Easy to get hacking Rust on BSD

• The Future: Oxidation of BSD?

33

