Rust: Systems Programmers
Can Have Nice Things

Arun Thomas
arun.thomas@acm.org

@arunthomas
EuroBSDCon 2019

mailto:arun.thomas@acm.org

On Systems Programming P#

[A] systems programmer has seen the terrors of the
world and understood the intrinsic horror of existence

-James Mickens, The Night Watch

What Makes Systems
Software Hard?

* Stakes are High: Systems software is critical to enforcing
security and safety

 Kernels, hypervisors, firmware, bootloaders, embedded
software, language runtimes, browsers, ...

e Usually written in C or C++ for performance
e BUT C and C++ are not memory-safe
e Memory corruption vulnerabilities abound (and are exploited)

e See recent Microsoft study (next slide)

3

Memory Unsafety Is a
Problem

2006 2007 2008 2005 2010 20N ie) V. 2013 204 2015 2116 2M7 2018
Patch Year

B Memory salely B NoLimemory salsly

Microsoft found ~70% of CVEs in their products each year
continue to be memory safety issues

(Matt Miller, MSRC @ Blue Hat IL 2019)

4

https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/

Microsoft and Rust

A bright future

Why Rust for safe systems programming

We believe Rust changes the game when it comes to writing safe systems software. Rust provides the
performance and control needed to write low-level systems, while empowering software developers to

write robust, secure programs.

Intel and Rust

4 ‘19

OPEN SOUSCE TECHNOLOCY SUNMIT

Intel and Rust”
The Future of Systems Programming

Josh Triplett
Principal Engineer

"Omer names and brands may be claimed as the property of others,

Talk Overview

“Systems Programmers Can Have Nice Things”

-Robert O’Callahan
Random Thoughts On Rust

e Why Rust?
* Rust for Systems Software

 Getting Started with Rust on BSD

Why ®ust?

| like C.

But It turns out programming
languages have evolved In
the last 50 years.

®

Rust Is a safe, fast,
productive systems
orogramming language.

Mozilla and Rust Q

 Rust was originally created by Mozilla Research

e |nitial use case: Servo browser engine

e Mozilla began shipping Rust components in Firefox 48 in 2016
* Oxidation is Mozilla’s term for “Rusting out” components

e Rust code has improved Firefox’s security and performance
e Security: Safe parsers (MP4 metadata parser)

* Performance: New parallel CSS engine for faster page loads

12

Systems Programmers Can Have
Nice Things: Speed and Safety

e Performance on par with C

e Memory safety without garbage collection overheads
e Suitable for low-level systems software

e Thread safety (“Fearless Concurrency”)

e No concurrency bugs associated with multi-threaded
code

e Rust’s type system enforces memory/thread safety

13

Systems Programmers Can Have
Nice Things: Productivity

* Good interoperability with C
e Important for systems software
e “Fancy” language features
e Type inference, algebraic data types, pattern matching, traits, generics
e Modules, hygienic macros, handy literals (0b7070, 0x8000_0000)
* Great tooling
* rustc - “friendly compiler with useful error messages”
e cargo - Great package manager and build system

* rustfmt - No bike shedding over coding styles

14

Hello, EuroBSDCon!

fn main() {
println! ("Hello, EuroBSDCon!");

}

Factorial

fn fact (n:1int) -> 1nt {
1f n == { }
else { n * fact(n-1) }
}

Variables

fn main() {
let x =
X = 3;

Mutable Variables

fn main() {
let mut x =
X += 1;
println!{“x 1s {}", X}

References

«v2 “borrows” an immutable reference to v1

fn main() {
let vl vec![1l, 2, 3];
let v2 = &vl;
printin!{"vl 1s {:7}", vl}
println!{"v2 1s {:7}", v2}

19

Mutable References

 Rust allows only one mutable reference in a given scope

fn main() {
let mut s = String::from("hello");

let r1 = &s;
let r2 = &s;
let r3 = &mut s;

printin! ("{}, {}, and {}", rl, r2, r3);
}

error[E0502]: cannot borrow s as mutable because it is also borrowed as
immutable

20

Ownership Overly
Simplified

 Ownership model is powerful, but takes time to fully grok
e Rust compiler tracks ownership (and borrowing/moves)

* Determines object lifetimes

* Restrict mutation of shared state (Allow mutation OR allow sharing)
e Ownership rules:

* Each value has a variable that’s the owner

e Only one owner at a time

* When owner goes out of scope, value will be dropped

21

Rust for
Systems Software

Gaining Popularity for
Systems Software (1/2)

e Rust Operating Systems: Tock, Redox, “Writing an OS in Rust”, ...

e Tock is particularly interesting for deeply embedded applications

e See Multiprogramming a 64 kB Computer Safely and Efficiently (SOSP’17)
 Google, Amazon, and Intel developing Rust-based hypervisors

e crosvm, Firecracker, Cloud Hypervisor

e Created rust-vmm initiative to increase sharing/collaboration
e Coreboot developers created oreboot - “coreboot, with C removed”

e See Open Source Firmware Conference 2019 talk

23

Gaining Popularity for
Systems Software (2/2)
Microsoft using Rust for Azure loT Edge Security Daemon

Google using Rust for Fuchsia components

Facebook using Rust for Libero cryptocurrecy and parts of
HHVM PHP runtime

Intel contributed VxWorks target

Mozilla and Fastly writing Webassembly runtimes (wastime,
Lucet) in Rust

CloudFlare and Dropbox using Rust for backend services

24

IS It time to rewrite
*BSD In Rust?

©Joyent

Is it time to rewrite the operating
system in Rust?

Bryan Cantrill
CTO

bryan@joyent.com
@bcantrill

25

Mostly no, but
maybe...

Oxidation BSD-style?

e Explore Rust for:

Safe Kernel Pragramming
with Rust

JOHANNES LUNDBERG

e Device drivers

The Case for Writing Network Drivers in
High-Level Programming Languages

e Filesystems

o Userland utilities

o Networked services

27

Getting Started with
Rust on BSD

Installing Rust

* FreeBSD

e $ pkg install rust

e $ pkg install rust-nightly
e NetBSD and OpenBSD

e $ pkg_add rust
e DragonFly BSD

e $ pkg install rust

29

Rustup

e Alternatively, use rustup for FreeBSD and NetBSD
* Handy when managing multiple Rust toolchains
e $ curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh

e ‘curl | sh’ pattern not required

30

Hello World w/ Cargo

$ cargo new —bin hello

Created binary (application) “hello package
$ cd hello
$ cargo run

Compiling hello v0.1.0 (/private/tmp/hello)
Finished dev [unoptimized + debuginfo]
target(s) in 1.52s
Running target/debug/hello’

Hello, world!
$ vl src/main.rs # Edit source
$ vi Cargo.toml # Edit pkg dependencies
$ cargo run

ﬁello, EuroBSDCon'!

31

http://main.rs

Rust Resources

THE RUST

PROGRAMMING :
Learn Rust oo oo

»

Get started with Rust

Affectionately nicknamed “the book," Alternatively, Rustlings guides you If reading multiple hundreds of pages
The Rust Programming Language will through downloading and setting up about a language isn't your style, then
give you an overview of the language the Rust toolchain, and teaches you the Rust By Example has you covered. While
from first principles. You'll build a few basics of reading and writing Rust the baok talks about cade with a lot of
projects along the way, and by the end, syntax, on the command line. It's an words, RBE shows off a bunch of code,

you'll have a solid grasp of the alternative to Rust by Example that and keeps the talking to a minimum, It
language. works with your own environment. also includes exercises!

READ THE BOOK! PO THE RUSTLINGS COURSE! CHECK OUT RUST BY EXAMPLE!

32

Summary

* Rust: Systems Programmers Can Have Nice Things

e Higher-level language safety and productivity with low-
level language performance

e Growing industry use for systems programming
e Easy to get hacking Rust on BSD

e The Future: Oxidation of BSD?

33

