
Unbound & FreeBSD
A true love story

(at the end of November ’2013)

1

September 19-22, 2019
Lillehammer, Norway

Presentation for EUROBSDCON 2019 Conference

2

https://2019.eurobsdcon.org/

About me:

Disclaimer: “Sensitive info has been renamed/removed intentionally from this story”.
3

Pablo Carboni (42), from Buenos Aires, Argentina.

Worked as Unix Admin, DNS Admin, Net Admin, etc, the last 2
decades.

“Passionate” for DNS, FreeBSD, Network, RFC, and development stuff
related.

My contacts:
 @pcarboni / @pcarboni@bsd.network
 linkedin.com/in/pcarboni

How did this story start?
This adventure began almost 6 years ago, by taking KPIs from some DNS
hardware appliances, when I’ve detected a performance bottleneck with the
CPU usage and QPS from those DNS servers …

(HW/Infra upgrade - ‘capacity planning’ was planned in the meantime)

The “not-so-funny detail”: Those boxes were used by more than 2.5M(!)
customers connected at the same time, for resolving internet addresses.

4

- 2.8 M of internet subscribers at the same time (customers).

- A pair of DNS Appliances

- A plateau line graphic, from 12pm to 8pm on both devices, reaching
60% of cpu avg usage during the whole range (the line got stuck there,
no curves, no peaks).

- QPS Summary: 20 kqps per physical box (40 kqps total)

The awful truth - #1/2 (“the numbers”)

Again, it’s worth to note that the HW/Infra upgrade was planned in the
meantime. 5

- Furthermore, the firewalls didn’t help so much, because the DNS
traffic was traversing them (high resource consumption because of high
volume of UDP packets, including CPU and other KPIs).

The awful truth - #2/2 (making it WORSE)

6

(It’s worth to note, in parallel, - just for “fun” -, I began to test
Unbound under FreeBSD, by the means of my little lab environment - This was
motivated because some people gave me good comments about it)

… yes, the DNS service was degraded!

Next steps - Planned actions
- First step: A huge DNS traffic re-engineering was needed.

⇒ It was done in less than 2 months, by rerouting it, and avoiding
firewalls in the middle of the paths.

7

✔

❌

- Second step: Deploy planned HW, load balancers plus physical servers.

⇒ This last step wasn’t so ‘easy’ as I really wanted.
(Unexpected issues appeared in the meantime!)

When the local problems hits hard...
- Argentina’s economical facts (2013): There were many (bureaucratic)

impediments to import hardware to Argentina because of economical
crisis, triggering delays for its local reception.

- HW planned (bought) versus (received): Enough physical servers +
Enough Load Balancers (LB) were bought.

- However, only Load Balancers arrived to the datacenters!

8

In the meantime, the stuff (lab infra, part #1/2)
- Hardware: Dell PowerEdge 1950 double Quadcore (2,0 Gigahertz)

- OS: FreeBSD 8.4 RELEASE/AMD64

- DNS software: Unbound 1.4.21 [NLNet labs], installed from ports directory
-tree updated-, compiled with Libevent [Niels Provos].

Just in case, I’ve used Libevent 1.4.14b (proven stable)

(No DNSSEC support was used at that time just to avoid making things
worse at that critical moment)

- Measurement tools: dnstop, from Measurement factory. 9

In the meantime, stuff+reading (lab infra, part #2/2)
- Stress testing tools: dnsperf package, in particular resperf (plus

query file sample) [Nominum - Now Akamai]

Query files taken from:
ftp://ftp.nominum.com/pub/nominum/dnsperf/data

- A depth-in reading (essential, do not skip it!) from the site:
https://calomel.org

(In particular, Unbound DNS tutorial and FreeBSD Network
performance tuning)

Note: The site is highly recommended for tasks like fine tuning
services, and *BSD OSes. 10

https://calomel.org

So…what should we do now? (Master plan, #1/5)
Because the service became degraded more and more, this was the
plan:

- Install the needed infrastructure, both load balancers, and
replacement for missing servers behind the LBs.

My boss: Hey Pablo, because you were testing Unbound on
your lab, do you want to try it on production? (yes/yes) :-)

Me: Ok, let’s recover/recycle some (old) hardware server boxes
from the own stock, and try to get the most of that.

To make it short: hands on!
11

A (tmp) network/service diagram (Masterplan, #2/5)
The following were the premises for the (temp) low level design, some
of them based on own needs, and others on the hardware
supplier/consultancy:

- A cluster of load balancers, one per site

One VIP every 50k udp ports.

- Several servers behind those LB (remember the lack of those ones).
Unbound + FreeBSD would be used (tmp).

- The VIP should be ‘easy’ to move between sites (HA).
BGP was the choice. No anycast network at all.

12

The big picture - Before re-engineering

13

The big picture, final - After re-engineering.

14

OS fine tuning (Masterplan, #1/6)
After FreeBSD was installed, fine tuning was applied based on lab:

At Operating System level (FreeBSD):

- Available UDP sockets, port range, and backlog.
- NIC drivers / timings / buffers / interrupt modes (Net I/O)
- Logs (Yes, I/O on disk is very important, right? ;-)

At DNS Service level (Unbound):

- DNS instances providing service (Enabling
more than 1 core/thread)

- UDP fine tuning, queries per core, etc. 15

OS fine tuning - The details (Masterplan, #2/6)
The following knobs are available (very incomplete list - Sample
values provided):

Operating System (file: /boot/loader.conf):

net.isr.maxthreads=3 # Increases potential packet
processing concurrency

kern.ipc.nmbclusters=492680 # Increase network mbufs
net.isr.dispatch="direct" # Int. handling via multiple CPU
net.isr.maxqlimit=”10240” # Limit per workstream-queues.
net.link.ifqmaxlen="10240" # Increase interface send queue

length
16

OS fine tuning - The details (Masterplan, #3/6)

17

Operating System (file: /etc/sysctl.conf):

kern.ipc.maxsockbuf=16777216 #Combined socket buffer size
net.inet.tcp.sendbuf_max=16777216 # Network buffer (send)
net.inet.tcp.recvbuf_max=16777216 # Network buffer (recv)
net.inet.ip.forwarding=1 # Fast forwarding between
net.inet.ip.fastforwarding=1 # interfaces
net.inet.tcp.sendspace=262144 # TCP buffers(sendspace)

default 65536
net.inet.tcp.recvbuf_inc=524288 # TCP buffers(recv).

Default 16384 default
kern.ipc.somaxconn=1024 # backlog queue (incoming TCP conn.)

OS fine tuning - The details (Masterplan, #4/6)
Some knobs available for Unbound (samples provided)
File: /usr/local/etc/unbound.conf (very incomplete list)

num-threads: 4 (number of cores)
msg-cache-slabs/rrset-cache-slabs: 4 (memory lock contention)
infra-cache-slabs/key-cache-slabs: 4 (memory lock contention)
rrset-cache-size: 512m (resouce Record Set memory cache size)
msg-cache-size: 256m (msg memory cache size)
Outgoing-range: 32768(number of ports to open)
Num-queries-per-thread: 4096 (Queries server per core)
so-rcvbuf/so-sndbuf: 4m (socket receive/send buffer)

18

Stress testing - Using dnstop (Masterplan, #5/6)
A text terminal was opened with dnstop. Another terminal

was running resperf.

Why did I use dnstop?

○ It’s a powerful tool for debugging queries and gathering
dns stats.

○ When queries quantity was almost the same as the answers,
it shows that maximum capacity was not reached (yet).

○ It doesn’t interfere with any DNS service.

○ It’s very lightweight, available for several OSes

19

Stress testing - Using resperf (Masterplan, #6/6)
Why did I use resperf? (Seems that current dnsperf was

enhanced)

○ It gave me the maximum qps allowed by random
queries by simulating a cache resolver and increasing
queries quantity

○ At least at that time, it had better(objective) results vs
dnsperf.

Note that resperf is an interesting tool for simulating random
queries from a desired source file with certain maximum desired.

20

Little demo: dnstop / dnstop in action

21

Initial conclusions from the lab infrastructure
- First tests were promising. Without tuning, I’ve got 10-15kqps

- By following Calomel’s hints about Unbound and FreeBSD, I’ve
ended up by doing fine tuning on network card, OS (udp, sockets,
ports range, etc), and Unbound config. (However, no DNSSEC was
used)

- My dry (but real) tests were incredible: I’ve got > 54kqps!

- Yes, DNS service -with high load in mind- was under control! :-)

22

Firing up the new DNS service
- The DNS assignment to the subscribers was (is) relatively easy.

(Just replace the desired IP addresses into the profile and wait for
the sessions until reconnect to the internet service).

- It was a matter of time (a very few hours) until the whole migration
was completed successfully.

- KPIs graphics monitoring was done with a customized Cacti.

23

- The dnstop tool was my best friend while
monitoring ‘live’ DNS traffic.

Conclusions (#1/3)
It should be noted that a rapid deployment based on the lab

took place because of several factors.

(Including dns performance bottleneck).

- Main conclusion: Unbound running on FreeBSD provided an

excellent performance without suffering any kind of

stability/performance issues (kernel, tcp ip stack, process, etc)

24

More conclusions (#2/3 - Raw numbers)
- Final deployment lasted for more than 6 months

until definitive hardware/propietary software arrived

- Queries received started from 80kqps, ended up with
120kqps distributed on 3 physical servers.

- DNS response times for non-cached queries were
lowered to < 0.1s!)

25

“It’s worth to note that the queries were made
from mobile subscribers to the internet!”

Conclusions (#3/3 - End of “love” story)

26

In summary:

The impact on the DNS service provided to customers was
incredible good, and the “quick and not-so-dirty” solution
was well received!

Lessons learned #1/2 (Dont’s)

27

● Don’t route your DNS traffic through a general purpose
firewall while having really high DNS traffic volume. (It didn’t scale
well - with NAT, timers, sockets)

● Don’t trust blindly on the appliance datasheet values. (Make sure
your KPI’s have normal values).

● Don’t avoid HA DNS infrastracture. DNS redundancy behaviour
works fine, but sometimes it’s better to have an DNS HA
deployment due high speed requirements needs.

Lessons learned #2/2 (Do’s)

28

● Have your KPIs well defined (QPS, traffic, UDP traffic). Use tools
like dnstop. Stress testing is recommended too.

● Put a dedicated LB (HW) in front of your DNS servers. It helps
with HA by reducing possible timeouts. If possible, 2 or more sites.

● Physical servers are better, by leveraging the whole HW
resources.

● Use scalable OS / DNS software. It allows to do fine tuning easly
while levaraging CPU cores, network HW, and optimizing DNS
resolution times and protection by hardening the service.

Acknowledgements
● FreeBD project (https://www.freebsd.org)
● NLNet labs (https://www.nlnetlabs.nl/)
● Nominum (now part of Akamai) (https://ww.akamai.com)
● The Measurement Factory (http://dns.measurement-factory.com/tools/)

Special acknowledgements to Mariusz Zaborski (@oshogbovx)
because he motivated me to send the talk to this event!

… Also a big “thank you” to Allan Jude (@allanjude) for corrections,
suggestions, over these slides.

29

http://www.freebsd.org
https://www.nlnetlabs.nl/
https://ww.akamai.com
http://dns.measurement-factory.com/tools/

Questions?

30

Thank you!

31

